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Some context and motivation



Contact manifolds and Legendrian submanifolds

A contact manifold is a pair (M2n+1, ξ) where

• M is a smooth manifold of odd dimension 2n+ 1; and
• ξ is locally ker(α) with α ∈ Ω1(M) such that α ∧ (dα)n 6= 0;

It is said that ξ is a contact structure and α is a contact form.

Contact structures are as far away as possible from foliations.

Proposition
If a submanifold L ⊂ M is such that TL ⊂ ξ, then dim(L) ⩽ n.

Such a submanifold Λ is Legendrian when dim(Λ) is maximal.



Tautological contact topology

ξB = ker(d z− p dq) is a contact structure on J1B = T∗B(q,p) × Rz.

Contact manifolds (M2n+1, ξ) are locally modelled on (J1Rn, ξRn).



Drawing Legendrian submanifolds

The front projection of Λ is its image by J1B→ J0B = B× R.

Front projections of Legendrian submanifolds are often singular,
even though Legendrian submanifolds are smooth.

Proposition
It is possible to perturb Λ in a way that its front projection is
stratified by transversally intersecting submanifolds, so that:

pi =
∂z
∂qi

,

and in particular, Λ is uniquely determined by its front.



Some important front projections



Contact rigidity of Legendrian submanifolds

Legendrian isotopies are not reducible to homotopy theory.
Theorem
Smooth isotopy classes of Legendrian submanifolds split into
infinitely many distinct Legendrian isotopy classes.

How to study the contact rigidity of Legendrian submanifolds?

Three types of different techniques:

• Pseudo-holomorphic curves theory;
• Generating families; or
• Microlocal sheaf theory;

and they are conjectured to produce ”equivalent” invariants, but
invariants from GF currently lack of algebraic structure.



Moduli spaces in generating family theory

How to construct invariants from generating families?

• From a generating family, construct a function δ : B× F→ R.

• Pick a product Riemannian metric g = gB ⊕ gF on B× F.

• For all critical points c− and c+ of δ, study:

M(c−, c+;g) =
{
γ; γ̇ = −∇gδ ◦ γ and lim

±∞
γ = c±

}
,

which are the Morse moduli spaces associated to δ and g.



Henry–Rutherford combinatorial dg-algebra

There exists a dg-algebra for Legendrian knots constructed from
moduli spaces of chord pathsMC(c−, c+) and it has a potential
geometrical grounding in GF [Henry–Rutherford, 2013].

So-called moduli spaces of gradient staircases Mst(c−, c+) are
expected to make a bridge betweenMC(c−, c+) andM(c−, c+;g).

Conjecture (Correspondence, Conjecture 3.1, p. 63, H.-R., ’13)

If s ∈ (0, 1] is small enough and gs =
(
s−1gR

)
⊕ gF, then there

exists a one-to-one set correspondence betweenMst(c−, c+)
andM(c−, c+;gs), provided they are both finite.

Whenever finite, MC(c−, c+) ' Mst(c−, c+) [H.-R., ’13].



Main statement

It is difficult to define chord pathsMC(c−, c+) in any dimensions,
but asking whether Mst(c−, c+) and M(c−, c+) are in bijective
correspondence or not still makes sense.

This question is adressed by developping a compactness-gluing
strategy for the adiabatic limit s→ 0.
Theorem (Compactness, Theorem 4.1, p. 69, F.)
If Λ → B has only Whitney pleat singularities and Λ is generic,
then for γs ∈ M(c−, c+;gs), with gs =

(
s−1gB

)
⊕ gF and s→ 0,

there exist sk −−−−→k→+∞
0 and e ∈ Mst(c−, c+) such that

γsk −−−−→k→+∞
e,

in the Floer–Gromov topology.



Main statement

• When n = 1, the singularity assumption is empty.
• When n ⩾ 2, it is homotopical [Alvarez Gavela, 2016].



Henry–Rutherford limiting process
and gradient staircases



Generating families

Holonomic sections of (J1B, ξB) are Legendrian isotopic to 0B.

If Λ ∼ 0B, then Λ is not necessarily a holonomic section of J1B.

Λ is a graph reduction of some holonomic section of J1(B× RN).
Definition

A generating family of Λ is a map f : Bb × RNη → R such that

1. Σf = (∂ηf)−1(0) is a transversally cut-out submanifold; and
2. Σf 3 (b, η) 7→ (b, ∂bf(b, η), f(b, η)) ∈ Λ is a diffeomorphism.



Homotopy lifting property of generating families

If Λ has a generating family, then it has infinitely many others:

• Stabilisation. Change dim(F) and fibrewise Morse indices µF.

• Fibred diffeomorphism. Deform fibrewise critical sets Σf.

Generating families are equivalent whenever they can be made
equal by applying a finite number of these moves.

Generating families are relevant to study Legendrian isotopies.

Theorem (Chaperon, Chekanov, Laudenbach, Sikorav, ’84–’96)
Isotopic Legendrian submanifolds have equivalent GF.



Difference function of generating families

Difference function. δ(b, η1, η2) = f1(b, η1)− f2(b, η2).

Proposition
The critical points of δ are of two types:

1. The positively/negatively valued critical points of δ are in
one-to-one correspondence with the Reeb chords of Λ.

2. There exists ε > 0 such that δ is Morse–Bott in {−ε < δ < ε},
and it has a unique critical submanifold Σ in this region.
Moreover, Σ is diffeomorphic to Λ.

Idea.
Construct invariants of Λ from the Morse theory of δ.



Generating family homologies: GFH and mGFH

Morse theory is ill behaved on noncompact manifolds.
⇝ Need to tame the behaviour at infinity of GF.
⇝ Assumption. Generating families are linear-at-infinity.
Definition (Traynor, 2001)
The generating family homology of (f1, f2) is defined by

GFH•(f1, f2) = Hk+N+1({δ < ω}, {δ < ε}; F2),

where all the positive critical values of δ are located in (ε, ω).

•Generators. Positively valued critical points of δ.

•Grading. Morse index of δ shifted by −N− 1.

•Differential. On generators: ∂c− =
∑
c+

#F2M(c−, c+)c+.



Invariance of GFH and mGFH

Grading shift ensures the invariance of GFH.

Theorem (Traynor–Sabloff, 2013)
If f1 ∼ f2, then GFH•(f1) ' GFH•(f2) as graded vector spaces.

Assymmetry breaks the grading invariance of mGFH.

Theorem (Invariance of mGFH, Theorem 2.2, p. 27, F.)
If f1 ∼ f2, then there exist N1,N2 ∈ Z such that for all f:

GFH•(f1, f) ' GFH•+N1(f2, f),
GFH•(f, f1) ' GFH•+N2(f, f2),

as graded vector spaces.



Henry–Rutherford limiting process

Generating family homology is hard to compute:

• Generating families are often qualitatively described.
• Difference function gradient flows are hardly tractable.
• Differential of the GF chain complex is not geometric.

Idea.
Constrain difference function gradient flow lines on Λ.

Speed up fibre components/slow down base components:

• Pick a Riemannian metric g = gB ⊕ gF on B× R2N.
• For all s ∈ (0, 1], let us define gs = (s−1gB)⊕ gF.
• Take the adiabatic limit s→ 0.



Slow-fast system associated to the adiabatic limit s→ 0

The adiabatic limit s→ 0 has a slow-fast dynamic.
Fast system

Time variable: t{
∂tbs(t) = −s∇gBδ(bs(t), ηs(t)),
∂tηs(t) = −∇gFδ(bs(t), ηs(t)).

⇝ s = 0 sol. ⊂ fibres.
⇝ Vertical fragments.

[Proposition 4.1, p. 70, F.]

Slow system

Time variable: τ = st{
∂τbs(τ) = −∇gBδ(bs(τ), ηs(τ)),
s∂τηs(τ) = −∇gFδ(bs(τ), ηs(τ)).

⇝ s = 0 sol. ⊂ {∇gFδ = 0}.
⇝ Horizontal fragment.

[Theorem 4.2, p. 89, F.]

As long as s 6= 0, the slow and the fast systems are equivalent.

Observe that {∇gFδ = 0} discriminates the two s = 0 states.



Moduli spaces of gradient staircases

Definition (Definition 3.2, p. 36, F.)
A gradient staircase is a tuple e = (h0, v1,h1, . . . , vm,hm):

• hi are horizontal fragments and vj are vertical fragments;
• concatenation of fragments of e are continuous; and
• h0 starts at c− and hm ends at c+.

The set of gradient staircases from c− and c+ is Mst(c−, c+).

Mst(c−, c+) is more tractable than M(c−, c+), because

• horizontal fragments are uniquely determined by Λ; and
• vertical fragments are related to bifurcations of GF.

⇝ The adiabatic limit s→ 0 splits the contributions to GFH.



Moduli spaces of gradient staircases



Floer–Gromov topology

Definition (Definition 3.4, p. 40, F.)

Let γk ∈ M(c−, c+;gsk) with sk −−−−→k→+∞
0 and e ∈ Mst(c−, c+),

then (γk)k∈N Floer–Gromov converges towards e whenever:

• There exist (τ vik )k∈N such that γk(·+ τ
vi
k )

C1loc−−−−→
k→+∞

vi.

• There exist (τhjk )k∈N such that γk(sk−1(·+ τ
hj
k ))

C1loc−−−−→
k→+∞

hj.

• Time shifts account for the free action by time-translations.

• Scaling allows to recover nonconstant horizontal fragments.



Proof of the compactness theorem



An infinite bubbling-like phenomenon

Prototypic situation

Data.
Moduli spaces: M.
Symmetry: G noncompact.

Compactification: M.
Add fibred products of M.

Finiteness of fragments.
Energy: E.
Total amount of E: finite.
Lower bounds on E: YES.

Adiabatic limit s→ 0

Data.
Moduli spaces: Mst.
Symmetry: RN (time-shifts).

Compactification: Mst.
Gradient staircases chains.

Finiteness of fragments.
Energy: length ℓ.
Total amount of ℓ: finite.
Lower bounds on ℓ: NO.



Gradient generic Legendrian submanifolds

Problem.
Vertical fragments become arbitrarily short near singularities.

Notations.
• Λ≺ = codimension one singular submanifold of Λ → B;
• L = Λ×B Λ, pairs of vertically aligned points in Λ; and
• L≺ = (Λ≺ ×B Λ) ∪ (Λ×B Λ

≺), singular points of L.

Solution.
If the adiabatic limit s→ 0 recover infinitely many fragments:
⇝ Vertical fragments accumulate on L≺.
⇝ Horizontal fragments become shorter and closer.
⇝ Horizontal fragments have arbitrarily deep tangency with L≺.



Gradient generic Legendrian submanifolds

Crucial observation.
Let X be a vector field onM and let also N ⊂ M be a submanifold.
If N is generic, then X is tangent at most to order dim(N) to N.

Iterated tangency loci.
For all m, Lm is the subset of points of L at the which the height
gradient vector field is tangent at least to order m to L≺.



Gradient generic Legendrian submanifolds

Iterated tangency loci {Lm}m∈N are not always well-defined.

Definition (Definition 1.11, p. 11, F.)
A Legendrian submanifold is gradient generic when for all m,
the set Lm is well-defined and is a manifold with boundary of
dimension n−m− 1.

Gradient genericity is a generic property.
Theorem (Transversality, Theorem 1.2, p. 12, F.)
The subset of all gradient generic Legendrian submanifolds
is open and dense in the set of all Legendrian submanifolds
with only Whitney pleat singularities for the C∞-topology.

The proof relies on the appropriate use of Sard’s theorem.



Finiteness of vertical fragments

Gradient genericity prevents wild breaking in the limit s→ 0.

Theorem (Finiteness, Theorem 4.3, p. 64, F.)
If Λ is gradient and chord generic, then only a finite number
of nonequivalent vertical fragments can be recovered from
any sequence γk ∈ M(c−, c+;gsk) with sk −−−−→k→+∞

0.

The proof is by contradiction, using energetical arguments.



Sketch of the proof for the finiteness of vertical fragments

⇝Nonequivalent vertical fragments (vj)j∈N recovered from (γk)k∈N.

Step 1.
There exist σ ∈ L≺ and a subsequence such that vj

C0−−−−→
j→+∞

σ.

Step 2.
There exists a sequence (hj)j∈N such that

• hj is parametrised by [0, tj];
• hj is an horizontal fragment recovered from (γk)k∈N; and
• there exists tj∗ ∈ [0, tj] such that hj(tj∗) ∈ L≺;

Moreover, tj −−−−→j→+∞
0 and hj

C0−−−−→
j→+∞

σ.



Sketch of the proof for the finiteness of vertical fragments

Step 3.
The sequence (hj)j∈N contradicts gradient genericity.

Step i.
For all θ > 0, let us define Lm(θ) recursively on m by

• Base step. If m = 0, then L0(θ) = L0.
• Inductive step. If m ⩾ 0, then Lm+1(θ) is the set of points
at which the angle between the height gradient vector field
and Lm is at most θ.

In particular, σ ∈ L0 and Lm(θ) is an open neighbourhood of Lm.



Sketch of the proof for the finiteness of vertical fragments

Step ii.
For all m, there exists a subsequence such that

hj(tj∗),hj+1(tj+1
∗) ∈ Lm(θ) =⇒ hj(tj∗) ∈ Lm+1(θ).

Since a flow line leaving a submanifold with an angle at least θ
cannot come back to it in a time less than Cθ, for some C > 0,
and tj −−−−→j→+∞

0 and hj −−−−→j→+∞
σ.

Step iii.
For all m, there exists Jm such that for all j ⩾ Jm, hj(tj∗) ∈ Lm(θ).

Conclusion.

If θ > 0 is small enough, then Ln(θ) is empty, since Ln is empty.
But since hj

C0−−−−→
j→+∞

σ, then σ ∈ Ln(θ), which is a contradiction.



Sketch of the proof for the compactness theorem

Assume that Λ is gradient and chord generic.

Use that fragments are in finite number to carry the first steps.

Step 1.
Recover all vertical fragments (v1, . . . , vm) from (γk)k∈N.
Assume that the vi are ordered by decreasing values of δ.

Step 2.
Recover all horizontal fragments (h0, . . . ,hm) from (γk)k∈N.
Then, by exhaustivity of the fragments:

∀k ∈ {1, . . . ,m− 1},hk− = vk−,hk+ = vk+1
−,

and also h0− = c−, h0+ = v1−, hm− = vm+ and hm+ = c+.



Sketch of the proof for the compactness theorem

Step 3.
Construct a gradient staircases chain from the vi and the hj.
The set of k such that either hk− or hk+ is a critical point of δ
provides a partition:

e1 = (h0,1, v1,1,h1,1, . . . , vm1,1,hm1,1),

· · ·
ek = (h0,k, v1,k,h1,k, . . . , vmk,k,hmk,k),

· · ·
er = (h0,r, v1,r,h1,r, . . . , vmr,1,hmr,r),

of (h0, v1,h1, . . . , vm,hm) with possibly missing h0,k or hmk,k.
If so, then it is defined to be constant on a semi-infinite interval.

Step 4.
Check that the ends of successive horizontal fragments match.



Homology computations with
gradient staircases



Standard Legendrian unknotted sphere

Let us define the Legendrian submanifold Λn0 of (J1Rn, ξRn) by:

Base case.

If n = 1, the front of Λ1
0 is .

Iterative step.
If n ⩾ 1, the front of Λn+1

0 is obtained by spinning this of Λn0 .



A linear-at-infinity generating family of Λn0

Using cut-off functions, the generating family

R× R 3 (b, η) 7→ η3 − 3(‖b‖2 − 1)η ∈ R,

can be made into a linear-at-infinity generating family fn0 of Λn0 .



Higher-dimensional Legendrian Hopf links

Let us define Λn(2) as the Legendrian submanifold of (J1Rn, ξRn)
whose front is two overlapping vertical copies of the front of Λn0 .



Generating family fn// (parallel copy construction)

Step 1.
Start from two copies F11 and F12 of fn0 , then:

• Decrease slightly the values of F11.
• Shift the fibrewise Morse indices of F12 by +1.

Step 2.
Translate F11 and Fn2 such that supp F11 ∩ supp F12 = ∅.

Step 3.
Iteratively spin f1// = F11 + F21 to construct a GF fn// of Λ

n
(2).

Observe that Step 2 ensures that fn// has no handleslides.



Generating family fn# (surgery construction)

Step 1.
Start from fn0 and shift its fibrewise Morse indices by +1.

Step 2.
Go through the following steps to construct f1# GF of Λ1

(2).

Step 3.
Iteratively spin f1# to construct a GF fn# of Λn(2).



Generators and grading of the chain complex

Let (C•, ∂•) be a generating family chain complex.

Generators. ↔ Reeb chords.
Grading. µ = ∆µF + µB − 1.

Perturb Λn(2) to offset the Reeb chords from the central axis.

Critical point c12 c11 c22 M12 c21 m12

Grading n+ 1 n n n n− 1 0

If n ⩾ 2, then: ∂c12 ∈ 〈c11, c22,M12〉, ∂M12 ∈ 〈c21〉, ∂c21 = ∂m12 = 0.



Counting gradient staircases

To identify the elements of e ∈ Mst(c−, c+), observe that

• chord length decreases along e; and
• e is uniquely determined by its vertical fragments;

⇝ Examine the strands between which c− and c+ lie.

Vertical fragments are made of:

• fibrewise death/birth gradient flow lines;
• fibrewise handleslides; and
• the concatenation of these two types of trajectories.

⇝ Jumping between different components requires handleslides.



Simple generating family homology of fn//

Since fn// has no handleslides, ∂n// must preserve the indices.

⇝ Only Mst(c12,M12) can be nonempty.


∂n//c12 = M12,

∂n//c11 = ∂n//c22 = 0,
∂n//M12 = 0.

Thus: GFH•(fn//) = 〈c11, c22,M12,m12〉 and Γfn
//
(t) = 2tn + tn−1 + 1.

[Proposition 5.1, p. 75, F.]



Simple generating family homology of fn#

Since fn# has handleslides, ∂n# no longer preserves the indices.


∂n#c12 = c11 + c22 +M12,

∂n#c11 = ∂n#c22 = c21,
∂n#M12 = 0.

Thus: GFH•(fn#) = 〈M12,m12〉 and Γfn#(t) = tn + 1.

[Proposition 5.2, pp. 75-76, F.]



Simple generating family homology of fn#

Since fn# has handleslides, ∂n# no longer preserves the indices.


∂n#c12 = c11 + c22 +M12,

∂n#c11 = ∂n#c22 = c21,
∂n#M12 = 0.

Thus: GFH•(fn#) = 〈M12,m12〉 and Γfn#(t) = tn + 1.

[Proposition 5.2, pp. 75-76, F.]



Simple generating family homology of fn#

Since fn# has handleslides, ∂n# no longer preserves the indices.


∂n#c12 = c11 + c22 +M12,

∂n#c11 = ∂n#c22 = c21,
∂n#M12 = 0.

Thus: GFH•(fn#) = 〈M12,m12〉 and Γfn#(t) = tn + 1.

[Proposition 5.2, pp. 75-76, F.]



Simple generating family homology of fn#

Since fn# has handleslides, ∂n# no longer preserves the indices.


∂n#c12 = c11 + c22 +M12,

∂n#c11 = ∂n#c22 = c21,
∂n#M12 = 0.

Thus: GFH•(fn#) = 〈M12,m12〉 and Γfn#(t) = tn + 1.

[Proposition 5.2, pp. 75-76, F.]



Simple generating family homology of fn#

Since fn# has handleslides, ∂n# no longer preserves the indices.


∂n#c12 = c11 + c22 +M12,

∂n#c11 = ∂n#c22 = c21,
∂n#M12 = 0.

Thus: GFH•(fn#) = 〈M12,m12〉 and Γfn#(t) = tn + 1.

[Proposition 5.2, pp. 75-76, F.]



Simple generating family homology of fn#

Since fn# has handleslides, ∂n# no longer preserves the indices.


∂n#c12 = c11 + c22 +M12,

∂n#c11 = ∂n#c22 = c21,
∂n#M12 = 0.

Thus: GFH•(fn#) = 〈M12,m12〉 and Γfn#(t) = tn + 1.

[Proposition 5.2, pp. 75-76, F.]



Mixed generating family homology of (fn//, fn#)

Observe that:

• fn// has no handleslides; and
• fn# appears with a minus sign in the difference function;

so that handleslides in gradient staircases can only go upward.

Therefore: 
∂n//,#c12 = c22 +M12,

∂n//,#c11 = c21,
∂n//,#c22 = ∂n//,#M12 = 0,

and thus: GFH•(fn//, f
n
#) = 〈M12,m12〉 and Γfn

//
,fn#(t) = tn + 1.

[Proposition 5.3, p. 77, F.]



Some research prospects



Gluing conjecture

Showing the one-to-one correspondence between Mst(c−, c+)
and M(c−, c+;gs) now amounts to a gluing theorem.

Conjecture (Gluing, p. 105, F.)

If Λ is generic and e ∈ Mst(c−, c+) with |c−| = |c+|+ 1, then
there exists a unique 1-parameter family γs ∈ M(c−, c+;gs)
with s→ 0 such that γs −−−→s→0

e in the Floer–Gromov topology.

The proof is expected to rely on the Newton–Raphson method
applied to a suitable right-invertible Fredholm operator and a
suitable initial smooth approximation of e (pre-gluing).



mGFH is a complete GF invariant

Observe that mGFH fits in the following long exact sequence

· · · −→ GFHk(f1, f2)
τk−→ Hk(Λ; F2)

σk−→ GFHn−k(f2, f1)
ρk−→ · · · ,

induced by the short exact sequence of the triple (δω, δε, δ−ε)

[Bourgeois–Sabloff–Traynor, 2015 & Theorem 2.4, p. 30, F.].

If Λ is connected and f1 ∼ f2, then τn is surjective [B.-S.-T., ’15 &
Theorem 2.2, p. 27, F.] and the converse is conjectured to hold true
in all generality.

Conjecture (mGFH is complete, Conjecture 2.1, pp. 56–57, F.)
If Λ is connected, then τn is surjective if, and only if, f1 ∼ f2.



Geography questions for GFH and mGFH

The graded vector space geography of GFH is already known
[Bourgeois-Sabloff-Traynor, 2015].

Question (Geography of mGFH, Conjecture 2.2, p. 58, F.)
What are the graded vector spaces realised by mGFH?

There exists a ring structure on GFH• [Myer, 2018].

Question (Ring geography of GFH, p. 106, F.)
What are the possible ring structures on GFH•?



Thank you for your attention!
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