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UNE PRÉSENTATION D’EXAIL

Un acteur industriel majeur des hautes technologies
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Notre entreprise en quelques chiffres

Laboratoires communs

Sites industriels

2000+ collaborateurs présents sur 4 continents.
• Des équipes commerciales et support dans 14 pays.
• 22 sites industriels en France et Belgique.
• 2 laboratoires communs en France.

370+ millions d’euros de chiffre d’affaire en 2024.

20% des revenus investis en R&D.
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Nos principaux domaines d’activité

Concevoir des technologies de pointe pour repousser les frontières, des abysses marins aux confins de l’univers.

Robotique PhotoniqueNavigation
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Des composants aux systèmes complexes

Une intégration verticale pour une maîtrise complète de la chaîne de production.

Composants Équipements

Navigation inertielle

Plateformes Systèmes complexes

Drones sous-marinsPositionnement acoustique

Drones de surface
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Quelques applications de la navigation inertielle

Permettre une estimation autonome et continue de la position, de la vitesse et de l’attitude.

Opérations maritimes Exploitation minière Cartographie mobile

Lanceurs & satellitesDéfense terrestre Défense navale
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Les algorithmiciens du pôle Navigation

Activités de l’équipe

Modélisation des capteurs inertiels :
• Compensations mécaniques du montage.
• Compensations thermiques.

Estimation des données de navigation :
• Intégration des données inertielles.
• Couplage avec des capteurs externes.

Composition de l’équipe

16 membres permanents, dont 7 docteurs :
• 3 en traitement du signal.
• 2 en mathématiques fondamentales.
• 1 en robotique.
• 1 en mécanique des fluides numérique.

5̃ étudiants en formation, dont 1 alternant.
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Mon parcours académique et professionnel

Agrégation
2017

Bourse ministérielle

Bourse FMJH

09/2018
Recrutement en CDI
05/2023 28/01/2026

Référent R&D mathématique

Soutenance
25/01/2023

1ère Rencontres MathTech (avec DG Exail)

4ème Rencontres MathTech

Master 2 Doctorat

Géométrie di�érentielle

Systèmes dynamiques
Topologie symplectique

Estimation statistique
Processus stochastiquesTopologie di�érentielle
Traitement du signal

Théorie de Morse paramétrique

Pourquoi rejoindre l’industrie de pointe ?

Bénéficier d’un environnement pluridisciplinaire exigeant.
Résoudre des problèmes réels à impact concret.
Construire une carrière stable et bien rémunérée.
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LA NAVIGATION INERTIELLE

Une histoire de géométrie et de statistiques
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Le fonctionnement d’une centrale inertielle

Une centrale inertielle est composée de
• 3 gyromètres qui mesurent la vitesse angulaire ; et de
• 3 accéléromètres qui mesurent l’accélération linéaire.

Principe d’équivalence d’Einstein :
• Les accéléromètres mesurent la différence à la chute libre :

accmes = accdyn −G.

• La connaissance du champ de gravité est essentielle.

Convertir les mesures inertielles en position :
• Les gyromètres donnent l’angle de pointage.
• Les accéléromètres déterminent le plan horizontal.
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Le comportement des erreurs inertielles en navigation terrestre

Estimation de la position par double intégration de l’accélération géographique.

Les accéléromètres mesurent l’accélération propre du véhicule dans le repère inertiel.

Ces mesures doivent être compensées des effets géophysiques et exprimées dans le repère géographique.

Ces corrections introduisent différents modes d’erreurs de navigation.

Terre Compensations Composantes Phénoménologie Explications

Rotation
Direction Équatoriales Oscillations bornées à 24h

Période sidérale de la Terre
Équateur penché

Norme Longitude Divergence linéaire Période sidérale altérée

Pesanteur
Direction Horizontales Oscillations bornées à 84min

Période de Schuler 2π
√

RT/g

Courbure de la Terre

Vitesse N/W⇔ Rotation W/N

Norme Verticales Divergence exponentielle Décroissancede la pesanteur
avec l’altitude
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L’hybridation avec des capteurs externes
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Problème : Plusieurs kilomètres d’erreurs en 1h.
• Divergence non maîtrisée de la longitude et de l’altitude.
• Précision insuffisante pour certaines applications.

Solution : Fusionner des mesures redondantes.
• Position : GNSS (satellites), USBL (acoustique).
• Vitesse : odomètre, DVL (acoustique).
• Distance : LBL (acoustique).

Exploiter le formalisme des représentations d’état.
• Estimation de processus stochastiques.
• Utilisation du filtrage de Kalman (étendu ou inodore).
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Le filtre de Kalman

Soit une représentation linéaire d’état :

xt = Ftxt−1 + vt, (équation de propagation)
zt = Htxt + wt, (équation de mesure)

où (vt)t et (wt)t sont des bruits de moyenne nulle et de covariance Qt et Rt, respectivement.

Objectif : Exploiter les mesures pour estimer les états du système dynamique stochastique.

Algorithme (Kalman, 1960)

Le filtre de Kalman est un estimateur (x̂t|t)t récursif de (xt)t défini par les équations de prédiction et de correction suivantes :

x̂t|t−1 = Ftx̂t−1|t−1, yt = zt − Htx̂t|t−1, x̂t|t = x̂t|t−1 + Ktyt,

Pt|t−1 = FtPt−1|t−1Ft
T + Qt, St = HtPt|t−1Ht

T + Rt, = (I − KtHt)x̂t|t−1 + Ktzt,
Pt|t = (I − KtHt)Pt|t−1(I − KtHt)

T + KtRtKt
T, (formule de Joseph)

= (I − KtHt)Pt|t−1,

où le gain de Kalman Kt est donné par Kt = Pt|t−1Ht
TSt

−1.

Le filtre de Kalman réalise une combinaison linéaire des mesures.
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Les performances du filtre de Kalman

Théorème (Kalman, 1960)

Si (vt)t et (wt)t sont des bruits blancs indépendants, c’est-à-dire que les conditions suivantes sont satisfaites :

∀t, ∀s,E(vsvt
T) ∝ δt−s,E(wswt

T) ∝ δt−s,

∀t,E(vtwt
T) = 0,

alors par construction de Kt, il vient E((x̂t|t − xt)yt
T) = 0, et x̂t|t est la projection orthogonale de xt sur Vect(z1, . . . , zt), donc :

x̂t|t = arg min
x̂∈Vect(z1,...,zt)

E(∥x̂ − xt∥2|z1, . . . , zt).

Ainsi, le filtre de Kalman est le meilleur estimateur linéaire, au sens de l’erreur quadratique moyenne.

Si de plus (vt)t et (wt)t sont gaussiens, alors x̂t|t = E(xt|z1, . . . , zt) et x̂t|t est l’estimateur du maximum a posteriori, donc :

x̂t|t = arg min
x̂

E(∥x̂ − xt∥2|z1, . . . , zt),

= arg max
x̂

P(xt = x̂|z1, . . . , zt). (régression bayésienne)
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Le filtre de Kalman en navigation inertielle

Les hypothèses d’optimalité du filtre de Kalman ne sont pas vérifiées en navigation inertielle.

Limitations Exemples Contournements

Linéarité des modèles

Procédure d’alignement 18 hypothèses de cap initial

Mesures LBL proche des amers Représentation d’états sur les erreurs

Linéarisation des équations de mesure

Blancheur des bruits
Instabilité des erreurs inertielles

Augmentation du nombre d’états (50+ états)
Corrélation des erreurs GNSS

Gaussianité des bruits Queue lourde des erreurs USBL Réjection des mesures selon les innovations

Le filtre de Kalman a marqué l’histoire de la navigation inertielle spatiale :

Dès 1961, Stanley Schmidt, alors ingénieur à la NASA, en perçoit le potentiel.

Il est ensuite utilisé avec succès lors de la mission lunaire Apollo 11 en juillet 1969.
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UN FILTRE DE KALMAN PROFOND

Dépasser les limites des estimateurs statistiques classiques
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Quel rôle pour l’apprentissage profond en navigation inertielle ? 

Apports potentiels

Détection des anomalies capteurs.
• Réjections des mesures.

Gestion des mesures complexes.
• Mesures de distance non-linéaires.
• Erreurs GNSS corrélées.

Substitut de la modélisation physique.
• Environnement (e.g. courant marin).
• Dynamique des véhicules.

Limites d’utilisation

Entraînement des modèles.
• Construction des vérités terrain.
• Collecte massive de données.

Généralisation des modèles.
• Combinatoire des paramètres.

Projections de performance.
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L’exemple des filtres de Kalman profonds

Filtres de Kalman profonds

Covariances des bruits Qt et Rt inconnues.

Conservation de la structure du filtre de Kalman.

Apprentissage du gain (et de la covariance).

Modèle fondateur : KalmanNet, Revach et al. (2022).

État de l’art : Cholesky-KalmanNet, Ko et al. (2024).

Organisation de notre activité de R&D

Veille scientifique et technologique.

Développement d’un filtre de Kalman profond.

2 publications dans des actes de conférence.

Recrutement de 3 stagiaires.

Ouverture prochaine d’une thèse CIFRE.
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L’architecture du Recursive KalmanNet

Gain de fusion K̂t appris par RNN.

Covariance P̂t|t décomposée via la formule de Joseph :

P̂t|t = (I − KtHt)Pt|t−1(I − KtHt)
T + KtRtKt

T,

= (I − KtHt)(FtP̂t−1|t−1Ft
T + Qt)(I − KtHt)

T + KtRtKt
T,

= (I − K̂tHt)FtP̂t−1|t−1Ft
T(I − K̂tHt)

T︸ ︷︷ ︸
Connu

+ (I − K̂tHt)Qt(I − K̂tHt)
T
+ K̂tRtK̂T

t︸ ︷︷ ︸
Facteur de Cholesky appris par RNN

.

Entraînement supervisé par descente de gradient.

Perte de log-vraisemblance négative gaussienne :

Et(Ext
((x̂t(Θ1)− xt)

TP̂t|t(Θ1,Θ2)
−1(x̂t(Θ1)− xt) + logdet P̂t|t(Θ1,Θ2))),

avec régularisation ℓ2 des poids Θ1 et Θ2 du modèle.

GRU

GRU
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Le cadre des simulations numériques

Représentation d’état

Cinématique 1D à vitesse constante :

Bruit blanc en accélération

Mesure de position

xt =

(
1 dt
0 1

)
xt−1 + vt, Qt =

(
0 0
0 σv

2

)
,

zt =
(
1 0

)
xt + wt.

Filtres de Kalman

Différents réglages de Rt :

Optimal (o-KF) : Rt = E(wtwt
T).

Réaliste (so-KF) : Rt ≡ 1.

Scénario 1 : wt non-gaussien

Mélange Bernouilli de gaussiennes :
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Xt, Yt, Zt indépendantes telles que :

wt = Zt + (1− Zt)Yt,

Xt ∼ N (0, σ1
2), Yt ∼ N (0, σ2

2), Zt ∼ B(p).

Scénario 2 : Généralisation sur wt

3 configurations d’écart type :
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3 modèles entraînés sur Réf, E1 et E2.
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Les performances du Recursive KalmanNet pour des bruits non-gaussiens

o-KF : SD emp.

so-KF : SD emp. RKN : SD emp.

CKN : SD emp.
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Le RKN surpasse le so-KF et le CKN en précision et en représentativité.

La précision et la représentativité du RKN se rapprochent de celles du o-KF.

Le RKN ajuste son gain en fonction du bruit de mesure, contrairement au so-KF.

H. Mortada, C. Falcon, Y. Kahil, M. Clavaud et J.-P. Michel, Recursive KalmanNet: Deep Learning-Augmented Kalman filter for State Estimation and Consistent Uncertainty Quantification. Dans 2025 33rd European Signal Processing Conference (EUSIPCO), IEEE, (2025), pp. 885-889.
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Les capacités de généralisation du Recursive KalmanNet
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o-KF : SD emp.
so-KF : SD emp.
RKNRéf : SD emp.
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Tous les RKN surpassent le so-KF en précision et en représentativité.

La précision et la représentativité du RKNRéf se rapprochent de celles du o-KF.

Les RKN perdent en représentativité en situation de généralisation.

Tous les RKN ont des gains asymptotiques proches du o-KF, et ajustent leurs gains en fonction du bruit de mesure.

C. Falcon, H. Mortada, M. Clavaud et J.-P. Michel, Recursive KalmanNet : Analyse des capacités de généralisation d’un réseau de neurones récurrents guidé par un filtre de Kalman. Dans 30e Colloque sur le traitement du signal et des images, GRETSI (2025), pp. 425-428.
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Quelle stratégie de déploiement de l’apprentissage profond chez Exail ?

Filtres de Kalman profonds

Estimations potentiellement plus robustes.

Capacité de généralisation limitée.
• Forte dépendance aux données d’entraînement.

Fonction principale des centrales inertielles.
• Exigences critiques de fonctionnement.

Déploiement impossible comme filtre de navigation.

Cas d’application ciblés

Systèmes de faible dimension.

Fonctions auxilliaires des centrales inertielles.

Exemple : Estimation du pilonnement par RNN

Système physique à 6 degrés de liberté :
• Porteur : cap, vitesse avant, accélération verticale.
• Houle : direction, fréquence, hauteur.

Sortie dédiée des centrales inertielles.

Précision accrue et convergence plus rapide.
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