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UNE PRESENTATION D’EXAIL

Un acteur industriel majeur des hautes technologies
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Notre entreprise en quelques chiffres

® Sites industriels

© Laboratoires communs

> 2000+ collaborateurs présents sur 4 continents.

 Des équipes commerciales et support dans 14 pays.
- 22 sites industriels en France et Belgique.
- 2 laboratoires communs en France.

> 370+ millions d'euros de chiffre d'affaire en 2024.

> 20% des revenus investis en R&D.
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Nos principaux domaines d'activité

Concevoir des technologies de pointe pour repousser les frontieres, des abysses marins aux confins de l'univers.

Robotique Navigation Photonique
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Des composants aux systémes complexes

Une intégration verticale pour une maitrise compléete de la chaine de production.

Composants Equipements Plateformes Systémes complexes

Navigation inertielle Drones de surface

Drones sous-marins
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Quelques applications de la navigation inertielle

Permettre une estimation autonome et continue de la position, de la vitesse et de l'attitude.

Défense terrestre Défense navale Lanceurs & satellites
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Les algorithmiciens du pole Navigation

Activités de l'équipe

Modélisation des capteurs inertiels :

- Compensations mécaniqgues du montage.
- Compensations thermiques.

Estimation des données de navigation .
* Intégration des données inertielles.
- Couplage avec des capteurs externes.

Composition de l'équipe

16 membres permanents, dont / docteurs .

- 3 en traitement du signal.

- 2 en mathématigues fondamentales.

* 1 en robotique.

- 1 en mécanique des fluides numérique.

5 étudiants en formation, dont 1 alternant.
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Mon parcours académique et professionnel

Geéométrie différentielle Traitement du signal
Topologie différentielle Topologie symplectique Processus stochastiques
Systeémes dynamiques Theéorie de Morse paramétrique Estimation statistique

Master 2 Doctorat Référent R&D mathématique

. o® ®
universite I
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09/2018 05/2023 28/01/2026

Bourse ministérielle Recrutement en CDI Leme Rencontres MathTech
2017 25/01/2023
Agregation Soutenance
Bourse FMJH lere Rencontres MathTech (avec DG Exail)

Pourquoi rejoindre 'industrie de pointe ?

Bénéficier d'un environnement pluridisciplinaire exigeant.
Résoudre des problemes réels & impact concret.
Construire une carriere stable et bien rémunérée.
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LA NAVIGATION INERTIELLE

Une histoire de geometrie et de statistiques
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Le fonctionnement d'une centrale inertielle

Une centrale inertielle est composée de

-+ 3 gyrometres qui mesurent la vitesse angulaire ; et de
- 3 accélérometres qui mesurent l'accélération linéaire.

Principe d'équivalence d’Einstein :
 Les acceélérometres mesurent la difference a la chute libre :
ACCrmes = OCCayn — G.

* La connaissance du champ de gravité est essentielle.

Convertir les mesures inertielles en position :

- Les gyrometres donnent I'angle de pointage.
- Les accélérometres déterminent le plan horizontal.
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Le comportement des erreurs inertielles en navigation terrestre

Estimation de la position par double intégration de 'accélération géographique.

Les accélérometres mesurent l'accélération propre du véhicule dans le repere inertiel.

Ces mesures doivent étre compensées des effets géophysiques et exprimées dans le repére géographique.

Ces corrections introduisent difféerents modes d'erreurs de navigation.

Terre Compensations | Composantes Phénoménologie Explications
N Direction Equatoriales Olsc.:illotio.nslbornées A 24h ¢ quateur penché
Période sidérale de la Terre
Norme Longitude Divergence linéaire Période sidérale altérée
Direction Horizontales Oscillations bornées & 84min | Courbure de la Terre
Pesanteur Période de Schuler 2r/Rr/g | Vitesse N/W « Rotation W/N
Norme Verticales Divergence exponentielle Décroissance de la pesanteur
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L'hybridation avec des capteurs externes

£ 400
S
8 2% Probléme : Plusieurs kilométres d'erreurs en 1h.
3 0 - Divergence non maitrisée de la longitude et de l'altitude.
3 Latitude » Précision insuffisante pour certaines applications.
GtJ -200 Longitude 7
Y c 10 15 20 Solution : Fusionner des mesures redondantes.
Temps (h) - Position : GNSS (satellites), USBL (acoustique).
5 . . . . - Vitesse : odométre, DVL (acoustique).
= - Distance : LBL (acoustique).
o
S Exploiter le formalisme des représentations d'état.
O . . .
O - Estimation de processus stochastiques.
g - Utilisation du filtrage de Kalman (étendu ou inodore).
L
0 5 10 15 20
Temps (h)
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Le filtre de Kalman

Soit une représentation linéaire d'état :

X, = Fx,_, +v;, (éguation de propagation)
z, = Hx, +w;, (égquation de mesure)
ou (v;); et (wy); sont des bruits de moyenne nulle et de covariance Q, et R;, respectivement.

Objectif : Exploiter les mesures pour estimer les états du systeme dynamique stochastique.
Algorithme (Kalman, 1960)

Le filtre de Kalman est un estimateur (x;); récursif de (x;); défini par les éguations de prédiction et de correction suivantes :
X¢i—1 = FXe_1)¢—1, Yr =z — HiXy—1,

5(\15|t — it|t—1 + Ky,
P11 = FtPt—llt—lFtT + Qy, S; = Htpt\t—lHtT + Ry,

= (I — KiH)xy—1 + Kizy,

Py = (I — KiHy)Pye 1 (1 — Kth)T + KRK, ", (formule de Joseph)
(I — KiH)Pypp—,

ou le gain de Kalman K; est donné par K; = Py, H;'S,™

Le filtre de Kalman réalise une combinaison linéaire des mesures.
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Les performances du filtre de Kalman

Théoréme (Kalman, 1960)
Si (v¢); et (w;); sont des bruits blancs indépendants, c'est-a-dire que les conditions suivantes sont satisfaites :
Vt, Vs, E(vev,') o< 6, E(WW, ') o 8,
vt,E(viw;') = 0,
alors par construction de Ky, il vient E((x;; — x;)y;') = 0, et X;; est la projection orthogonale de x; sur Vect(zy,. .., z;), donc:

X = argmin E(|[X —x|*|z1, ..., z).
xeVect(zy,...,2;)

Ainsi, le filtre de Kalman est le meilleur estimateur linéaire, au sens de l'erreur quadratique moyenne.

Si de plus (v;); et (w;),; sont gaussiens, alors X;; = E(x;|zi, . . ., z;) et X, est I'estimateur du maximum a posteriori, donc :
Xy¢ = arg min E(|[X — x;[°[z1, . . ., z¢),
X
= arg maxP(x; = X|z1,...,2;). (régression bayésienne)

X
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Le filtre de Kalman en navigation inertielle

Les hypothéses d'optimalité du filtre de Kalman ne sont pas vérifiées en navigation inertielle.

Limitations Exemples Contournements
Procédure d'alignement 18 hypothéeses de cap initial
Linearite des modeles | Mesures LBL proche des amers Représentation d'états sur les erreurs

Linéarisation des équations de mesure

Instabilité des erreurs inertielles
Blancheur des bruits Augmentation du nombre d'états (50+ états)

Corrélation des erreurs GNSS

Gaussianité des bruits | Queue lourde des erreurs USBL Réjection des mesures selon les innovations

Le filtre de Kalman a marqué I'histoire de |la navigation inertielle spatiale :

Deés 1961, Stanley Schmidt, alors ingénieur & la NASA, en percoit le potentiel.
Il est ensuite utilisé avec succes lors de la mission lunaire Apollo 11 en juillet 1960.
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UN FILTRE DE KALMAN PROFOND

Dépasser les limites des estimateurs statistiques classiques
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Quel réle pour I'apprentissage profond en navigation inertielle ?

Apports potentiels Limites d'utilisation
Détection des anomalies capteurs. Entrainement des modeles.
- Réjections des mesures. - Construction des veérités terrain.

. » Collecte massive de données.
Gestion des mesures complexes.

- Mesures de distance non-linéaires. Genéralisation des modeles.
* Erreurs GNSS corrélées. - Combinatoire des parametres.
Substitut de la modélisation physigue. Projections de performance.

- Environnement (e.g. courant marin).
- Dynamique des véhicules.
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L'exemple des filtres de Kalman profonds

Filtres de Kalman profonds Organisation de notre activité de R&D
Covariances des bruits Q, et R, inconnues. Vellle scientifique et technologique.
Conservation de la structure du filtre de Kalman. Développement d'un filtre de Kalman profond.
Apprentissage du gain (et de la covariance). 2 publications dans des actes de conférence.
Modéle fondateur : KolmanNet, Revach et al. (2022). Recrutement de 3 stagiaires.

Etat de I'art : Cholesky-KalmanNet, Ko et al. (2024). Ouverture prochaine d'une these CIFRE.
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L'architecture du Recursive KalmanNet

Gain de fusion Rt appris par RNN.

Covariance P,; décomposée via la formule de Joseph :

/|5t|t = (I = KiH)Py (1 - Kth)T + KthKtTa

= (1= KH)(FP,_,iF," +Q)(1 - KH)" + KRK,",
T

Connu Facteur de Chole;Ey appris par RNN
Entrainement supervise par descente de gradient.

Perte de log-vraisemblance négative gaussienne :

i (Ex, (X:(01) — X;) 'Pys(©1,0,) 7 (%,(01) — X,) + log det Py, (6, 6,))),
avec regularisation ¢, des poids 0; et ©, du modele.

<
—~ —~ o~ ~ o~ T ~  ~_°
(1= KH)FP,_y F' (1 - KH) + (1= KH)Q,(I - KH) + KRK]

Flzyt :
Fz =K 1311
Fy=H, 1

3F4:Zt_zt71

tht—1|t—1

Xt|t—1

©,

A A4

Xjt—1 + K, (ze — HyXye—1)

X¢—1)t—

Z—l
1

Z—l

P

{FlaF27F3aF3}

SP

GRU

(I — IA{/Ht)th)t—Ht—lFtT(I - K/Ht)T —‘
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Le cadre des simulations numériques

Représentation d'état Scénario 1: w; non-gaussien Scénario 2 : Généralisation sur wy
Cinématigue 1D a vitesse constante :  Mélange Bernouilli de gaussiennes : 3 configurations d'ecart type :

Bruit blanc en accélération A 5.

Mesure de position = 45

X; = (é Cit) X—1+V, Q= (8 022) 7 ;.; " :E;ef

2 = (1 O) X; + wy. 30'5
Filtres de KCIImGn -40 260 469|'emp§60 860 1OI00 0O 510 Tomps 160 150
Differents reéglages de £ ; X, Y:, Z, indépendantes telles que : 3 modeles entrainés sur Réf, ET et E2.

Optimal (0-KF) : R, = E(waw,'). w = Z,+ (1— Z)V,

Réaliste (so-KF) : R, = 1. X, ~ N(0,0.2), Y; ~ N(0,052), Zi ~ B(p).
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Les performances du Recursive KalmanNet pour des bruits non-gaussiens

0.50 0.7
| —&4— 0-KF : SD emp. —&— CKN : SD emp. —4— 0-KF —&— CKN
\ s —4- oKE: Py, —&= CKN: Py, 0.6 - + —%¥— s50-KF —%— RKN
0454 & \ —%¥— s0-KF : SD emp.—»— RKN : SD emp.
g L‘\ \ s SO—KF: Ptlt — - RKN Pt|t 0.5 _
R= A\ =
Z 0404 f W\ S
-~ | '\ \, 2 0.4
5 I\ . o A o
)
o (0.35 - | \)Q ® 03 -
2 ' \ M . o V-
- A W 4 “ / =
§ h \ ...»x ' \' - — . y. /{5 8 \ \ ‘
Faot [
L, . _ MA
‘\-ﬁ — A A A~ e - o e —y s~ 0.1 '
0.25 - Y din e V= b ZEmmnde -
| | | | | | | 0.0 4 T T T T
0 25 50 75 100 125 150 0 10 20 30 40 50 60
Temps Temps

e RKN surpasse le so-KF et le CKN en précision et en représentativité.

| a précision et la représentativité du RKN se rapprochent de celles du o-KF.

_e RKN ajuste son gain en fonction du bruit de mesure, contrairement au so-KF.

H. Mortada, C. Falcon, Y. Kahil, M. Clavaud et J.-P. Michel, Recursive KalmanNet: Deep Learning-Augmented Kalman filter for State Estimation and Consistent Uncertainty Quantification. Dans 2025 33rd European Signal Processing Conference (EUSIPCO), IEEE, (2025), pp. 885-889.
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Les capacités de généralisation du Recursive KalmanNet

0.8 - —#— O0-KF:SDemp. ~—#~ oKF: P, 0.8 - —A— RKNggr: SDemp. ~* = RKNpgs: Prjs
%= so-KF:SDemp. ~ ¥~ so-KF: ﬁtlt —— RKNg; : SDemp. ™~ RKNg; : I’St|t

0.7 1 Y —&— RKNg¢r: SD emp. &= RKNg¢r: Py 0.7 - ’f —*— RKNg;: SDemp. =~ RKNg: Py,
|
I

Ecart type en position
Ecart type en position
Gain moyen en position

’\.._.*_.—-*—..—.-._..l
0-1 I I I I I I I 0-1 I I I I I I I 00 I I I I I I I
0 25 50 75 100 125 150 0 25 50 75 100 125 150 0 25 50 75 100 125 150
Temps Temps Temps

Tous les RKN surpassent le so-KF en précision et en représentativité.
La précision et la représentativité du RKNggs se rapprochent de celles du o-KF.
Les RKN perdent en représentativité en situation de généralisation.

Tous les RKN ont des gains asymptotiques proches du o-KF, et ajustent leurs gains en fonction du bruit de mesure.

C. Falcon, H. Mortada, M. Clavaud et J.-P. Michel, Recursive KalmanNet : Analyse des capacités de généralisation d'un réseau de neurones récurrents guidé par un filtre de Kalman. Dans 30e Colloque sur le traitement du signal et des images, GRETSI (2025), pp. 425-428.
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Quelle stratégie de déploiement de l'apprentissage profond chez Exail ?

Filtres de Kalman profonds

Estimations potentiellement plus robustes.

Capacité de généralisation limitée.
- Forte dependance aux données d'entrainement.

Fonction principale des centrales inertielles.
 Exigences critiques de fonctionnement.

Déploiement impossible comme filtre de navigation.

Cas d'application ciblés
Systemes de faible dimension.

Fonctions auxilliaires des centrales inertielles.

Exemple : Estimation du pilonnement par RNN

Systeme physique a 6 degrés de liberté :

- Porteur : cap, vitesse avant, accélération verticale.

- Houle : direction, fréquence, hauteur.

Sortie dédiée des centrales inertielles.

Précision accrue et convergence plus rapide.

Pilonnement (m)

2.5
0.0 1
—2.5"

Erreurs de pilonnement (m)

Aot al s Ml W "
~h“v"“( ""\J ',‘ )',.( vrwﬁv “) ) l<lr1“ W b "kwm

—— Algorithme embarqué — RNN

1.0
0.5-
0.0

-0.5-

-1.01

O 100 200 300 400 500 600
Temps (s)
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