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About Exail

High-tech French industrial group, with more than 2000
employees in 80 countries. Specialized in:
• Robotics

• Navigation

• Photonics

The navigation division produces extremely precise
inertial navigation systems:
• Based on Fiber-Optic Gyrometers (FOG) and MEMS
accelerometers

• Output position, velocity and attitude

• Internal and external sensors (e.g. GNSS) are fused using
Kalman Filter (KF) variants
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Problem statement: State and Uncertainty estimation

Linear state-space model:

xt = Ftxt−1 + vt, vt ∼ N (0,Qt)

zt = Htxt +wt, wt ∼ N (0,Rt)

• Ft is the state transition matrix

• Ht is the observation matrix

• The noise terms vt and wt are white and independent

The KF is a linear recursif estimator fusing the predictions and the observations via a closed-from gain in a
prediction-correction scheme

Noise and KF performance:
White Independant Gaussian

Best Linear Unbiased Estimator 7 7

Minimal Mean Square Error 7 7 7

These noise requirements are rarely met in real-world applications

Goal: overcome the noise requirements and without the prior knwoledge of Qt and Rt
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Deep Learning-Augmented Kalman Filtering methods

Goal: address the limitations of the traditional KF

Main idea: learn the Kalman gain by leveraging the estimated states in a supervised fashion

Architecture: a Recurrent Neural Network (RNN) with a set of features such as the innovation

State-of-the-art:

• KalmanNet [1]: pionneer paper tested on model mismatch and system nonlinearities. It lacks the estimation of the error
covariance matrix and the tracking of time-varying gains

• Split KalmanNet [2]: estimates the gain using two RNN’s estimating its components: the predicted error covariance matrix
and the inverse of the innovation covariance

• Cholesky KalmanNet [3]: add-on split KalmanNet to output the error covariance matrix by calculating its Cholesky factor to
ensure its Cholesky factor. Trade-off between state estimation and covariance error matrix accuracy due to the cost
function choice

[1] G. Revach, N. Shlezinger, X. Ni, A. L. Escoriza, R. J. Van Sloun, and Y. C. Eldar, “KalmanNet: Neural Network Aided Kalman Filtering for Partially Known Dynamics,” IEEE Trans. Signal Process., vol. 70, pp. 1532–1547, 2022.

[2] G. Choi, J. Park, N. Shlezinger, Y. C. Eldar, and N. Lee, “Split- KalmanNet: A Robust Model-Based Deep Learning Approach for State Estimation,” IEEE Trans. Veh. Technol., vol. 72, pp. 12 326–12 331, 2023.

[3] M. Ko and A. Shafieezadeh, “Cholesky-KalmanNet: Model-Based Deep Learning With Positive Definite Error Covariance Structure,” IEEE Signal Process. Lett., vol. 32, pp. 326–330, 2025.
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Proposed method: Recursive KalmanNet (RKN)

Deep learning model inspired by Kalman filtering, preserving the prediction–correction scheme

Operates without prior knowledge of noise covariance matrices Qt and Rt, and without assuming any noise model

Composed of two RNNs:
• One dedicated to direct gain estimation

• Another contributes to error covariance estimation using the generic Joseph’s formulation

First method to yield accurate state estimation and consistent error covariance thanks to the architecture and
tailored cost function
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Kalman Filter

Prediction:
x̂t|t−1 = Ftx̂t−1|t−1

Pt|t−1 = FtPt−1|t−1FtT +Qt

Gain:

Kt = Pt|t−1Ht
T (HtPt|t−1Ht

T + Rt
)−1

Correction:

x̂t|t = x̂t|t−1 + Kt(zt − Htx̂t|t−1)

= (I− KtHt)x̂t|t−1 + Ktzt

Pt|t = (I− KtHt)Pt|t−1(I− KtHt)
T + KtRtKtT
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Recursive KalmanNet (RKN) Architecture

Prediction:
x̂t|t−1 = Ftx̂t−1|t−1

Pt|t−1 = FtPt−1|t−1FtT +Qt

Gain:
K̂t = RNNΘ1

(F1, F2, F3, F4)

Correction:
x̂t|t = x̂t|t−1 + K̂t(zt − Htx̂t|t−1)

Ĉt = RNNΘ2
(F1, F2, F3, F4)

P̂t|t = (I− K̂tHt)FtP̂t−1|t−1FtT(I− K̂tHt)
T︸ ︷︷ ︸

Ât

+ ĈtĈt
T︸ ︷︷ ︸

B̂t

GRU

GRU

Training is performed by gradient descent on the negative
Gaussian log-likelihood of the error estimation:

e(i)t (Θ1)
TP̂(i)t|t(Θ1,Θ2)

−1
e(i)t (Θ1) + logdet P̂

(i)
t|t(Θ1,Θ2),

averaged over time and batch, where e(i)t = x̂(i)t (Θ1)− xt.
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Case study: Heavy-tailed bimodal-Gaussian measurement noise

1D constant-speed linear model, with a position measurement

xt =
[
1 1
0 1

]
xt−1 + vt, xt ∈ R2

zt =
[
1 0

]
xt + wt, zt ∈ R.

The process noise vt is zero-mean Gaussian white noise with

covariance Qt =

[
0 0
0 σv

2

]
The measurement noise wt follows a heavy-tailed bimodal-Gaussian
distribution:

wt = ZtXt + (1− Zt)Yt

•Xt, Yt, and Zt are independent white noise processes

•Xt and Yt are Gaussian with variances σ12 and σ2
2 respectively

• Zt is Bernoulli with parameter p

• wt is distributed as pN (0, σ1
2) + (1− p)N (0, σ2

2). It has variance
Rt = Ztσ1

2 + (1− Zt)σ2
2, and an expected variance of σw2 = pσ1

2 + (1− p)σ2
2
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Results: Performance at varying noise heterogeneity levels

Numerical application: σv2 = 10−4, σ1
2 = 1.56σw

2, p = 0.6, N = 1000 (test set size)

Compared methods:
• O-KF: Optimal KF with time-varying Rt = Ztσ1

2 + (1− Zt)σ2
2 (reference method)

• SO-KF: Sub-Optimal KF with constant Rt = σw
2 = pσ1

2 + (1− p)σ2
2

• Cholesky KalmanNet (CKN)
• Recursive KalmanNet (RKN)

Metrics: MSE =
1

T

T∑
t=1

1

N

N∑
i=1

e(i)t
Te(i)t MSMD =

1

T

T∑
t=1

1

N

N∑
i=1

e(i)t
TP(i)t|t

−1
e(i)t︸ ︷︷ ︸

CLT⇒∼N (2, 4/N)

MSE and MSMD for varying noise heteroginity ν = 10 log
σw

2

σv2

ν 20 30 40 50 60
MSE MSMD MSE MSMD MSE MSMD MSE MSMD MSE MSMD

o-KF −28 2.0 −21 2.0 −14 2.0 −6.9 2.0 0.1 2.0

so-KF −26 2.0 −18 2.0 −11 2.0 −3.9 2.0 3.4 2.0

CKN −20 4.0 −17 27 −11 3.2 −4.8 6.2 2.4 21

RKN −26 2.0 −19 2.0 −12 2.0 −5.1 1.9 2.3 2.2

RKN gives closest MSE to O-KF with consistent error covariance reflected by MSMD close to 2
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Results: Performance at varying noise heterogeneity levels
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Results: Position gain and error standard deviation estimations

fixed ν = 40 dB
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RKN is able to track challenging time-varying gain behavior
RKN provides consistent position error covariance of the state error and is better with the conventional so-KF
CKN error covariance is not consistent with the empirical error
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Results: Model generalization capabilities
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No degradation in estimation precision.
Loss of uncertainty consistency in error covariance estimation.

[4] C. Falcon, H. Mortada, M. Clavaud, and J.-P. Michel, “Recursive KalmanNet : Analyse des capacités de généralisation d’un réseau de neurones récurrent guidé par un filtre de Kalman,” in 30e Colloque sur le traitement du signal et des images. GRETSI, 2025.
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Conclusion

RKN, a deep-learning augmented Kalman filter that leverages two recurrent neural networks to estimate gain and
error covariance using a formulation derived from Joseph’s equation

In scenarios with bimodal Gaussian noise, RKN outperformes conventional Kalman filters and a state-of-the-art
deep learning approach, delivering accurate state and covariance estimates that closely reflect actual errors

RKN shows strong potential in cases where classical Kalman filtering falls short, such as in non-linear systems or
with incomplete state-space models
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Thank you for your attention!
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